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1.

Let S be a compact subset of Euclidean n-space En' Let C(S) be the space
of real-valued continuous functions on Sand 3t the finite dimensional
subspace of real-valued polynomials of degree :("k, 0:(" k < 00. For
f, g E C(S), d(f, g) = III- gil = SUPXES I/(x) - g(x)1 is called the sup-norm
distance between I and g. The distance d(f, 3t) between I and 3t is defined
to be MinpE,9\ d(f, p). d(f, 3t) is attained on 3t, i.e., jpk E 3t '3 d(f, Pk) =
d(f, 3t), any such Pk being called a best kth degree approximant to I on S
[1, p. 20]. In general, Pk is not unique (see, in this respect, Haar's Unicity
Theorem [1, p. 81 D.

We ask the following question. Suppose I(x) is independent of some
variable Xl' Can Pk' for all k, also be chosen to be independent of Xl? We
shall characterize the sets for which this is the case.

For n = 1 the problem is trivial and we let n ~ 2. We find it convenient to
replace n by n + 1, so that n ~ 1, and to denote the points of En + I by
x= (x,y), where X = (XI' ... , xn ). Without loss of generality, we assume the
above-mentioned variable Xl to be y. S is used to denote any compact subset
o! E n ±1' and S to denote the set {x:xES}. For aE_S, the set
Sa = {X E S: X = a} will be referred to as the vertical section of S based at a.
S is called the projection of S. Observe that/(x) E C(S) itTI(x) E C(S).

DEFINITION 1. (i) S has property H, or S E H, itT V/(x) E C(S) and
Vk, 0:(" k < 00, j a best kth-degree approximant Pk(X) to f(x) on C(S). That
is, iff is independent of y, then, for all k, Pk may be chosen to be independent
of y. Pk(x) is thus a best kth-degree approximant to f(x) on both Sand S.

(ii) S has property H k , or S E H k , 0:(" k < 00, itT V/(x) E C(S) and
Vj, O:("j:(" k, j a bestjth-degree approximant pix) to f(x) on S. Namely, if
f is independent of y, then Pi may be chosen to be independent of y, provided
j~k.
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Clearly Ho consists of all compact subsets of E n+ I and
H k 1H = n~o H k • We use some results in approximation theory to trans
late the property H k into algebraic terms (Theorem 2). For k = 1, Belly's
Theorem on convex sets is then employed to convert the algebraic criterion
into the following geometric one.

THEOREM 5. S E HI ijJ 3 a hyperplane y = alx l + ... +anxn+an+I

which meets the convex hulls of all vertical sections of S.

In Theorem 6, we show that the geometric characterization of HI is also
one of H k , k ~ 2, provided S meets every vertical line x = constant in an
interval, in which case S is called y-convex. In Theorem 7, some examples
are given showing that Theorem 6 need not hold when S is not y-convex, and
we have no geometric characterization of Hk , k ~ 2, valid for all compact
sets.

Finally, we mention that the problem which we have posed can be
generalized to the case where x is obtained from x by deleting more than one
variable. Our methods are not amenable to this case, which we leave as an
open problem. The difficulty with the generalized problem is that there seems
to be no appropriate counterpart to Theorem 3, which is crucial to our
argument.

2.

We introduce several concepts which prove useful in characterizing H k'

DEFINITION 2. (i) Let 4.(Sa) = convex hull of Sa' 4.y(S) = UaES 4(Sa)'
4y (S) is called the y-convex hull of S.

(ii) S is y-convex iff 4.y(S) = S. That is, S is y-convex iff every
vertical line meets it in an interval.

The term hyperplane of En + 1 denotes any subset 7t of En + I with equation
alxl + ... +anXn+an+ly+an+2=O, the ak constants not all zero. n is
called a nonvertical hyperplane or n.v.h. if its projection is En' i.e., an+1"* O.

DEFINITION 3. S has the transversal property (t.p) iff 3 n.v.h. meeting all
its vertical sections.

DEFINITION 4. Let I; be a finite subset of En and t a subset of En + 1

projecting onto E. Let e(x) be a function on I; with values ± I, and
f(X) = e(x), x E E. e(x) is called a signature in En with carrier E, and e(X) a
lifted signature in En + l' or the lifting of e(x) to En +l' with carrier t.
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(ii) A signature e(x) is admissible of degree k iff 3 a polynomial Pk(x)
of degree ~k 3 e(x) Pk(X) >0, x E E. A lifted signature e is admissible of
degree k iff 3 a polynomial Pk(X) of degree ~k 3 e(X) Pk(X) >0, i E f. e and
eare called inadmissible of degree k if the above requirements do not hold.

Remarks. Theorem 1 below brings out the significance of inadmissible
signature for approximation theory. The geometric characterization of inad
missible signatures and lifted signatures is a difficult problem. Two
noteworthy exceptions are:

(i) k = 1: Let E + = {x: e(x) = +l}, E _ = {x: e(x) = -l}. e(x) is inad
missible of degree 1 iff there is no hyperplane in En separating E + from E _,
which is equivalent to A(E+) II A(E_) :#: 0 [2, p. 21, exercise 1]. A similar
description holds for e.

(ii) n = 1: e(x) is inadmissible of degree k iff E contains k + 2 points
XI < ... <Xk+2 with either e(xJ= (_l)i Vi or e(x i ) = (_l)i+l Vi [5, p. 682].

THEOREM I [5, p. 678]. Letf(x) E C(S),j(x):#: polynomial, and Pk(X)
a polynomial of degree ~k. Pk(x) is a best kth-degree approximant to f(x) on
S iff 3 inadmissible signature e(x) of degree k with carrier E c S 3
e(x)(f(x) - Pk(X)) = Ilf(x) - Pk(x)II, x E E.

We obtain a criterion for S to be in H k • We say that e(x) is a signature in
S if E c S. In this case f is assumed to be {i E S: x E E}. e(xl is then
called a lifted signature in S.

THEOREM 2. Let 1 ~ k < 00. S E H k iff every inadmissible signature of
degree k in S lifts to an inadmissible signature of degree k in S.

Proof We prove the equivalence of the negatives of the two statements.
Suppose that S EHk. Namely, 3f(x) E C(S), with Pk(X) as a best kth-degree
approximant on S, and a polynomial qk(X) of degree ~k 3

II f(x) - Pk(X) - qk(X)11 < Ilf(x) - Pk(x)ll· (2.1 )

Choose e(x) as in Theorem 1. It follows from (2.1) that f(x) - Pk(x) and
qk(i) have identical signs on f. This means that e(X) qk(X) > 0, i E f, so
that e(i) is admissible of degree k in S.

Suppose that e(x) is an inadmissible signature of degree k in S which lifts
to an admissible signature e(X) of degree k in S. Let f(x) = e(x) on E and
extendf(x) to be continuous on S with If(x)1 < I, xES - E. By Theorem 1
o is a best kth-degree approximant to f(x) on S. Let qii) be a polynomial
of degree ~k 3 e(i) qk(i) > 0, i E f. For 15 > 0 sufficiently small,
Ilf(x) -15qix)11 < Ilf(x) - 011. Hence, S EHk.

In view of Remark (ii), Theorem 2 can be restated as follows when n = 1.

6401)6/4-4
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THEOREM 2'. Let n = 1, 1~ k < 00. S E H k iff for every set of points
XI <... < X k +2 in S, there is no polynomial h(x,y) of degree ~k satisfying
(_1); h(x,y) >°along SXi' 1 ~ i ~ k + 2.

For k> 1, the criterion of Theorem 2 is ineffective, as it is difficult to
decide whether a given signature or lifted signature is inadmissible of degree
k. For k = 1, however, we have the geometric description given in
Remark (i). We use it to obtain a geometric description of HI' We require
Helly's Theorem and its consequences Theorems 3 and 4.

HELLY'S THEOREM [4]. Let {Ca}' a E A and IA I~ n + 1, be a family of
closed convex subsets of En' Suppose that

(i) 3 a finite number of Ca's with nonempty bounded intersection.

(ii) Any n + 1 Ca's have nonempty intersection.

Then na<A Ca * 0. If A is finite then the theorem holds if the Ca's are
just assumed convex.

We use the following terminology. An m-flat in En' °~ m~ n, denotes
any translate of an m-dimensional linear subspace of En' Let S be contained
in the m-flat V but in no (m - I)-flat. V is uniquely determined by S. m is
called the dimension of S, and we write dim S =m.

THEOREM 3. Let S be y-convex and dim S = n. If the union ofany n + 2
distinct vertical sections of S satisfies t.p., then so does S.

Proof For n = 1, this theorem is proved in [4]. The proof goes through
for arbitrary n, and we present it here for the sake of completeness.

Analytically, the condition dimS = n means that 3n + 1 points
p1,...,pn+1 E S:3

D=
p: ... p~ 1

*0. (2.2)

;; -Suppose hat lSI = n + l. Choose (p ,y ) E Spj, 1 ~ i ~ n + l. Since
D *0, the equations

1~ i ~ n + 1, (2.3)

have a unique solution (a 1'... , an + I)' The n + 1 vertical sections of S are met
by the n.v.h. y = a l XI + ... + anxn+an+l' and so S satisfies t.p.

Suppose next that lSI ~ n + 2. For pES, let IIp be the set of n.v.h.'s
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meeting Sp= {x:x=p, cp~y~dp}'The n.v.h.y=alxl + ... +anxn+an_ 1

may be identified with the point (ai''''' an+I) E E n+I' In this identification,

IIp= {(ai''''' an+I): cp~PI al + ... +Pnan +an+I ~ dp}, (2.4)

which is a closed convex subset of En + I .

We conclude from (2.2), (2.4) that n7~l IIpi is a nonempty bounded
subset of E n+I' By assumption, any n + 2 of the IIp's have nonempty inter
section. Theorem 3 follows from Reily's Theorem.

THEOREM 4. Let S be y-convex. Suppose that t.p. holds for the union of
any k + 2 distinct vertical sections Spl ,..., Spk+2 with dim { 1,..., pk +2} = k, k
varying from 1 to n. Then S satisfies t.p.

Proof For n = 1, Theorem 4 is identical in meaning with Theorem 3.
Assume then that n ~ 2 and Theorem 4 is true in dimension <no If
dim S = m <n, then S spans an m-flat V and S c V= {x: x E VI. The
n.v.h.'s in V are the n.v.h.'s in E n + I intersected with V. It follows from the
induction hypothesis that S satisfies t.p.

Suppose next that dim S = n. Let Spl, ... , Spn+2 be distinct vertical sections
of S. U7~t Spi satisfies the conditions of Theorem 4. If dim{pl, ... ,pn+21 < n,
then by the induction hypothesis, U7~12 Spi satisfies t.p. If
dim{pl, ... ,pn+2} = n, then U7~12 Spi is assumed to satisfy t.p. It follows from
Theorem 3 that S satisfies t.p. .

THEOREM 5. S E HI iff Ay(S) satisfies t.p.

Proof Let S E HI' We show that Ay(S) satisfies the conditions of
Theorem 4 and so t.p. holds for Ay(S). Let pi ,...,pk+2 and
dim{p!,..., pk+2} = k, 1 ~ k ~ n. We must show that t.p. holds for
U7~t A(Spl)' pi,..., pk+2 lie in some k-flat. After a possible relabeling of
indices, these points may be separated into two nonempty sets {p!,...,pr},
{pr+I,...,pk+2}, 1~r<k+2, 3A(pl,...,pr)nA(p'+I,...,pk+2)*0 [2,
p.34]. Lete(pi) = +1, 1~ i ~ r, and e(pi) = -1, r + 1~ i ~ k + 2. By
Remark (i) e is an inadmissible signature of degree 1 in S. It follows from
Theorem 2 that g is an inadmissible lifted signature of degree 1 in S. Again
by Remark (i),

We have

(2.5)
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Pi varying over A(Spl)' 1 ~ i ~ r, with a similar formula for A(Sp,+" ..., Spw),
Hence,

r k+2
I Aip

i
= I Adi

i=1 i=r+1
(2.6)

for some choice ofpi = (pi,i) E A(Sp,) and Ai ~ 0,2:;=1 Ai =2:7;;;+ I AI = 1,
1~ i ~ k + 2. Subtracting pk+2 from both sides of (2.6), we get

r k+ I>-' ,1..( ~I - ~k+2) = )' ,1..( ~I _ ~k+2)
~ ,p P .:- ,p P .
1=1 l=r+1

(2.7)

At least one of the A/s on the left side of (2.7) is >0, so that
~1 ~k+2 ~k+ I ~k+2 l' 1 d d d' I k+2P - P ,...,p -pare mear y epen ent. Im{p ,...,p } = k means
that there are k linearly independent vectors among pi _ pk+\...,
pk+ I _ pk+ 2. It follows that there are k linearly independent vectors among
pi _ pk+ 2,•••, pk+ I _ p+2. We conclude from linear algebra that the
respective dimensions of the solution spaces of

and

n

L (pJ - pJ+2) aj = 0,
j=1

1 ~ i ~ k + 1, (2.8)

~t: (PJ - pJ+2) aj= jtl (PJ - pJ+2) aj+ (y' - yk+2) an+1= 0,

I ~ i ~ k + I, (2.9)

are n - k and n + I - k. If an + 1= 0, then (2.9) becomes (2.8). Thus the
space satisfying both (2.9) and an+ I =°has dimension n - k. It follows
that (2.9) has a solution (al' ...,an+I), an+I=FO. Letting an+2=
- 2:'j;;l aj pJ+2, we conclude that pt,...,pk+2 lie in the n.v.h.
L~=I akxk+an+1Y +an+2= 0=0. That is, U:;;[ A(Spi) satisfies t.p.

Conversely, let t.p. hold for Ay(S). Let y = lex), 1 linear, be an n.v.h.
meeting all vertical sections of Ay(S). Let e(x) be a signature on S with
carrier E, and l(X) its lifting to S. Suppose l is admissible of degree 1. That
is, 3 a linear function L(X) which is >0 on Sx' x E}; +, and L(X) <°on Sx'
x E}; _. By linearity, we also have L(X) >°ori' A(Sx), x E};+' and L(x) <°
on A(Sx), x E}; _. ll(x) = L(x, lex)) is a linear function satisfying 11(x) >0,
xE};+, and It(x) <0, xE};_. That is, e is admissible of degree 1. Thus,
inadmissible signatures of degree I in S lift to inadmissible signatures of
degree I in S. We conclude from Theorem 2 that S E HI'

THEOREM 6. (i) Let I ~ k < 00. If S E Hk, then IqS) satisfies t.p.

(ii) If Sis y-convex and satisfies t.p., then S E H.
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Proof Since H k C HI' 1~ k < 00, (i) follows from Theorem 5. To prove
(ii), we must show 8 E H k , 1~ k < 00. We duplicate the argument in the
last paragraph of the proof of Theorem 5, replacing the linear function L(X)
by a polynomial piX) of degree k.

3.

In Theorem 6, (ii) is the converse of (i) provided 8 is assumed y-convex.
We give examples showing that the converse to (i) need not hold for general
8. The sets in Theorem 7 are in £2 and their y-convex hulls satisfy t.p.

THEOREM 7. Let 8m= {(x,y): x m+ym = I}, m a positive even integer.
82 E H and 8m E H2' m > 2.

Proof We use the criterion of Theorem 2'. Consider first 82
• Let

-1 ~ XI < ... < X k +2 ~ 1, 1~ k < 00. Suppose h(x,y) is a polynomial of
degree ~k satisfying (_I)i h(X,y) > 0 on 8;., 1~ i ~ k + 2. Let
ai = (cos 0i' sin Oi)' bi = (cos 0i' -sin Oi)' 0 ~ Ok~2 < ... <01 ~ n, be,
respectively, the upper and lower end points of 8;. Then
sgnPk(ai) = sgn(h(bi) = (_I)i. h has at least one zero between co'nsecutive
a/s and consecutive b/s. Hence h has at least k + 1 zeros on each of the
semicircles 82(l{y>0}, 82(l{y<0}, and qk(O)=Pk(cosO,sinO) is a
trigonometric polynomial of degree ~2k, having at least 2k + 2 zeros in
(0,2n). This contradicts the fact that a trigonometric polynomial of degree
~k has at most 2k zeros in (0,2n) [3, p. 77, problem 14]. Hence h(x, y)
does not exist, and 82 E H k , 1~ k < 00, or 82 E H.

Consider next m > 2. Let Pm(x,y) = _x2- y2 + 21
/

2
-

1
/
m and {xl' X 2' X 3'

x4,xs!={-I,-2-I/m,0,2-1/m,I}. We have (-I)i pm(x,y»O on 8;i,
1~ i ~ 5, so that 8m E H2 •
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